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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2344 

METHOD FOR CALCULATING DOWNWASH FIELD DUE TO LIFTING SURFACES 

AT SUBSONIC AND SUPERSONIC SPEEDS 

By Sidney M. Harmon 

SUMMARY 

A method utilizing source singularities is presented for obtaining 
the linearized downwash field due to lifting wings of infinitesimal 
thickness at subsonic and supersonic speeds. The distribution function 
for the source singularities is specified by the loading on the wing. 
The method is applied to derive generalized formulas for the downwash 
field due to uniformly loaded swept and rectangular wings at subsonic 
and supersonic speeds. The utilization of these formulas to obtain the 
downwash due to wings of arbitrary loading is indicated. An example of 
the procedure is given in which specific formulas are derived for the 
downwash field due to a rectangular wing at supersonic speeds for a 
uniform loading and for a linear chordwise variation in loading. 

INTRODUCTION 

Several methods based on linearized theory are available to obtain 
the downwash field due to lifting surfaces at subsonic and supersonic 
speeds for use, as an example, in stability calculations. The calcu- 
lation of the downwash field at subsonic speeds has relied almost 
exclusively on Prandtl's lifting-line theory, which is based on the 
concept of a horseshoe vortex (for example, reference 1). Present 
methods for calculating the downwash field at supersonic speeds are 
those utilizing conical flows (reference 2), potential doublets (refer- 
ence 3), vortices (references 4 and 5), and pressure doublets (refer- 
ences 6 and 7). The integrations required of the foregoing vortex 
or doublet singularities or in the conical-flow method in order to 
obtain exact solutions of the linearized equations for lifting surfaces 
have generally been found to be difficult; therefore practice has 
usually had recourse to approximate methods based on lifting-line 
theories (references 5 and 7). 

The present report, prepared at the NACA Lewis laboratory, indi- 
cates a method that is intended to facilitate the computations for 
obtaining the exact linearized downwash field due to lifting surfaces 
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at subsonic and supersonic speeds. The method utilizes source singu-       w 

laxities with the distribution function specified by the loading on 
the surface. The method is applied herein to derive formulas for the 
dovnvash field due to uniformly loaded swept and rectangular wings of       OJ 

infinitesimal thickness at subsonic and supersonic speeds. The utili-       N 
zation of these formulas to obtain the downwash field due to wings of 
arbitrary loading, by means of the correspondence relations presented 
in reference 8, is then indicated. An example of the procedure is 
given in which specific formulas are derived for the rectangular wing 
at supersonic speeds for a uniform loading and for a linear chordwise 
variation in loading. 

SYMBOLS 

The following symbols are used in this report: 

A,B,CT,C2     refer to regions bounded by foremost Mach aft cone 
D      corners of rectangular wing at supersonic speed 

Dl> 2'"'  5      (plan view of regions in fig. 3) 

a constant used to describe prescribed linear chordwise 
variation in loading 

B 'VM
2
 - 1 (also used to refer to Mach cone region as 

indicated in fig. 3) 

B-L =     A/l - M2 

b arbitrary constant 

c chord for rectangular wing 

h wing semispan 

I refers to integral and solution expressed by equa 
tions (25b) and (25e), respectively 

I refers to integral and solution expressed by equa- 
tions (25c) and (25g), respectively 

2jt 
K constant in equation (1) (K = TJ- at subsonic speeds; 

K = - at supersonic speeds) 
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M free-stream Mach number 

m 

u0 

cot A, where A is angle of sweep of wing leading 
edge (fig. 1) 

r     -      ^x4)2-B2By-Ti)2+z3 

r«       = V(x,^')2-B2(y,2+£,2) 

u,v,w        disturbance velocities of fluid in flow field along 
x-, y-, and z-axes, respectively (fig. l) 

value of u on upper surface of wing for uniform 
prescribed loading 

w refers to downwash due to left half of wing 

■w refers to downwash due to uniform prescribed loading 
on wing 

v-, refers to downwash due to linear chordwise variation 
in prescribed loading on wing 

vT contribution to downwash of continuous portion of 
leading edge for semi-infinite oblique wing with 
uniform loading shown in figure 1; also represents 
downwash due to semi-infinite line source originating 
at leading edge of center section 

vTD contribution to downwash of discontinuity of leading 
edge at origin in semi-infinite oblique wing with 
uniform loading shown in figure 1 

wn jj downwash due to term in series formed by expressing u 
' on wing as function of x, y,  and u0 

WG contribution to downwash of streamwise side edge for 
semi-infinite oblique wing with uniform loading 
shown in figure 1; also represents downwash due to 
semi-infinite streamwise line source originating 
at leading edge of center section 

wx   >  wx v  represents downwash due to semi-infinite line source 
0>y0   0' 0   originating at (xQ,y0) on right and left halves of 

wing, respectively 
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x,y,z rectangular coordinates with origin at leading edge 
of center section (fig. l) 

xt,y',z»      oblique coordinates related to rectangular coordinates      £ 
according to equations (5) OJ 

x }Y rectangular coordinates indicating origin of semi- 
°' infinite line source 

ya      =        y-h 

yb   = y+h 

(Aw ) contribution to downwash of wing cut-off at trailing 
0 T edge for uniform loading 

e infinitesimal distance in y-direction across side 
edge 

i>T\>t>>V>i\'tV    auxiliary variables used to replace    x, y,  z, x1, 
y',  and    z',  respectively 

B/vya 
+z 

eb      -       BV^b 2+z2 

id        - V|B2|(y2
+Z

2) 

l *d    «    V|B2|(y,2+z'2) 

||« Upper limit for integral in equation (7) (See dis- 
cussion following equation (7).) 

T region of integration (See discussion following 
equations (l) and (3).) 

Q function representing solution of linearized partial 
differential equation (2) 

Subscripts: 

A B,C ,C refer to corresponding regions indicated in figure 3 
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cr refers to chord at center section of swept wing 

ct refers to chord at tip section of swept wing 

L,S,T,LD,TD   refer to continuous portion of leading edge, side 
edge, trailing edge, discontinuity in leading edge, 
and discontinuity in trailing edge, respectively 

u,Z refer to upper and lower surfaces of airfoil, 
respectively 

Single or successive subscript coordinates indicate partial 
differentiation with respect to subscript variable. 

s t 
x ,y" indicates partial differentiation with respect to x 

and y, s and t times, respectively 

BASIC THEORY 

The analysis is based on the usual assumptions for thin airfoils 
in the linearized potential field. A solution for the disturbance 
parameters can thus be obtained by integrations of source and doublet 
singularities in the plane of the wing (z = 0). The basic equation is 
(for example, references 9 and 10) 

n^^-l/JJ^.^^^Ifi) de dT)     (i) 

where the function Q is a solution of the linearized partial differ- 
ential equation for subsonic and supersonic flows 

-B^xx+0yy+Q
ZZ = ° (2) 

In equation (l), r = ^{x-i^-B2 [(y-T))2+z23 and the region T 

includes the entire z = 0 plane that can influence the point (x,y,z). 
At subsonic speeds, the factor K is equal to l/2it. At supersonic 
speeds, the factor K is equal to l/jr and only the finite part of 
the integral is used. It is important to note that the function Q can 
represent either the velocity potential or any of its derivatives, ar.d 
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if a>l these values vanish sufficiently far ahead of the wing, the 
inters S A are solutions of equation (2). In case the deriva- 
tive^ Q becomes infinite at one or more points, the substxtutxon 
of Ibis derivative for Q in equation (2) depends on the condxtxon ^ 
?hat ehe isolation of each singularity yields a finite integrand xn g 

the limit. 

SOURCE DISTRIBUTION FOR DOWNWASH FIELD 

A lifting wing of infinitesimal thickness is considered. The 
perturbation velocity u vanishes everywhere in the z = 0 plane 
IZZontie wing itself, and the perturbation velocity v vanxshes 
everwhSe in the z = 0 plane except on the wing and in the wake. 
In equation (l), letting Q = w and noting that 

v - v, = 0 

"z^u^-v^ 

(ue)u=-(u^ 

tVu--(Vi 

result in 

w(x,y,z) = - K//| (B2ufvri) de di, (3) 

where T represents one surface of the wing and of the wake that can 
Influence the point x,y,a. The quantity v^ is a functxon of u 
through the irrotationality relation 

v = u„ 
i    n 

Therefore, 

- £"-.at (4a) 
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vi=XL ^^ (4b) 

According to equation (3), the perturbation velocity w at any 
point in the flow field due to a lifting surface is determined by an 
integration of elementary source solutions with the distribution 

-    .  function given by (B2u^-vT,). 

THE SEMI-INFINITE OBLIQUE WING WITH UNIFORM LOADING 

An important application of equation (3) can be obtained by con- 
sidering a semi-infinite oblique wing with uniform loading (fig. l). 
The origin of the coordinate system is taken at the intersection of 
the leading and side edges, where both edges extend to infinity. For 
uniform loading, the term u* in equation (3) vanishes everywhere over 
the region T except across the leading edge. In evaluating the dis- 
continuities in u or v that occur across the edges, a limiting 
procedure is used throughout the present analysis, which corresponds 
to the assumption of a linear variation in u or v across an 
infinitesimal strip of the edge. The distribution of v over the 
region T for this type of loading, as obtained from equation (4a), 
is shown in figure 2, and v^ is seen to vanish everywhere except 
across the edges. In terms of equation (3), therefore, the downwash 
field for a semi-infinite oblique wing of uniform loading is obtained 
by means of a line integration of sources along the edges. 

It is subsequently shown that the downwash solutions for the semi- 
infinite line sources along the leading and side edges may be used by 
simple manipulation to obtain the downwash field for finite plan forms 
of uniform loading. 

The Semi-Infinite Oblique Leading Edge 

The semi-infinite oblique leading edge with origin at (0,0,0) con- 
tributes to ut and v^ along the edge and, by virtue of the dis- 
continuity of the edge at the origin, contributes to v„ along the 
x-axis beginning at the origin and extending backwards to infinity. 
(See distribution of v in fig. 2.) The downwash contribution of 
the continuous portion of the leading edge is designated w^j whereas 
the contribution of the edge discontinuity at the origin is designated 
WLD- 
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Contribution of continuous portion of leading edge. - The integra- 
tion of equation (3) along the oblique leading edge is most conveniently 
performed in terms of an oblique system of coordinates, such that 

x' = x-mB^y 

y' = y-mx 

= z A/L-m2B2 

(5) 

It may be shown that the differential equation (2) is invariant under 
the change of variables x—►x', y-*-yS and z—*z' at both subsonic 
and supersonic speeds. If Q (x,y,z) is a solution of equation (2), 
Ü(x%y',z') is therefore also a solution. For other examples of the 
use of the oblique transformation in wing-theory problems, see refer- 
ences 11 to 13. 

In the oblique coordinate system, equation (3) evaluated along 
the wing leading edge becomes 

wJxSySz') = -Kj p-w^ATl'dS' (6) 

H 
H 

where 

r» = Aj(x'-V)2-B2(y,2+z'Z) 

Noting that 

(wz,)L = 
B' 'U M-vTjr-mB

2(u ,-V|') 

CmV 

and along the leading edge for an infinitesimal strip of width AT}', 

U£, = v^= 0 

u 
V^.AT]' = 

M      m 
0 

u ,AT]' = -uA Tl'  '        0 
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results in 

u0Vi- •B m H* 
m r' ^(xSySz-) -K-^-r      "^ (7) 

At subsonic speeds, the upper limit 52 = °°> and the integral is 
divergent. In actual cases, however, this divergence does not present 
any difficulty because the construction of the finite leading edge by 
means of the superposition of two semi-infinite leading edges of 
opposite sign leads to the result that the infinite upper limit 
cancels. At supersonic speeds, £2  

is the position of the last 
source with Mach aftercone including the point x',y',z'j that is, 

V2    = x'-BVy
,2+z'2 

Integration of equation (7) yields the following expressions for 
the line source originating at (0,0): 

At subsonic speeds, 

, x       u0
/\/l+m2B1

2 1   xt 
wL(x,y,z) =    u v„_ sinlTx £- (8a) 

2itm 

where 

vd » VIB2l(y,2+z*2) 

and 

Bj^ = /\/l-M2 

In equation (8a), the term that arises from substituting the upper 
limit of integration has been neglected because, as indicated pre- 
viously, it vanishes for leading edges of finite lengths. 

At supersonic speeds, for Bm < 1 (subsonic leading edge), 

wL(x,y,z) - JjJ Vl-B
2*2 cosh"1 p (8b) 
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and for Bm > 1 (supersonic leading edge), equation (8b) becomes 

*t<™«> - - s V^ cos_1 v (8c) 

In equations (8) and in all subsequent expressions, the positive 
value in a radical term must be preserved when extracting the root. 
For example, if 

y < 0 

then 

V? = V(-y)2 = -y = |y| 

For a leading edge normal to the flight direction, m = » and 
equations (8) yield the following expressions: 

At subsonic speeds, 

VT (x,y,2) „ ^ sinh-1 ,    Bl\ 9 (8d) 

At supersonic speeds , 

/    ^    ^0-1   -By /8e\ 

It is shown by equations (8) that the downwash fields wL con- 
tributed by the oblique and normal leading edges are conical, or w 
is constant along radial lines emanating from the origin. 

Contribution of leading-edge discontinuity at origin. - From fig- 
ure 2, it can be seen that the leading edge cut-off at the origin 
results in 

v^ATj - - Ü2 O») 
T] '    m 

along the semi-infinite side edge. When equation (9a) is substituted 
into equation (3) (with u^ equal to zero along the side edge), there 
results 

cvi 
H 
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*2 

W*,y,*) - -^ ./  f" (9b) 
'0 

where i?    is the position of the last source that can influence the 
point x,y,z; that is, at subsonic speeds, £2 is at infinity; and at 
supersonic speeds, 

i2  = x-B^'Z+z2 

Integration of equation (9b) yields the following: 

At subsonic speeds, 

\DI*>*>4  = " 2^ Sinh*1 £ (l°a) 

where the term arising from the infinite upper limit of integration has 
been neglected because it vanishes for leading edges of finite length 
and 

ed = V|B
2| (y2+z2) 

At supersonic speeds, 

/    x    u0   ._i x (10b) wT_(x,y,z) =   cosh x j— 
ID ran      5a 

It is shown by equations (10) that the downwash contribution of the 
leading-edge discontinuity at the origin results entirely from the 
obliquity of the leading edge. Thus, if the leading edge is normal to 
the flight direction, this contribution vanishes. 

The Semi-Infinite Streamwise Side Edge 

Along the streamwise side edge, the quantity u* vanishes; thus 
the source-distribution function along this edge is proportional only 
to the quantity v«. 

The details of evaluating the contribution of the streamwise side 
edge to the downwash field are given In the appendix. The results for 
the semi-infinite left streamwise side edge are as follows: 
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Bn2uny 
V   (X  Y   2)   ■   - 0  h    +   % (ll8L) ws(x,y,2) 2n     lx+^TT     td2j H 

d»U.     / i-w 

At supersonic speeds, 

?V / i__ - -Zr\ (lit) 

Equations (11) show that the downwash contribution of the streamwise 
side edge is independent of the obliquity of the leading edge. 

FINITE WINGS WITH UNIFORM LOADING 

The downwash field due to finite wings with uniform loading can 
be obtained by superimposing the fields due to a number of semi-infinite 
wings of the type considered in the previous section (fig. 1). This 
superposition is equivalent to superimposing the fields due to the 
source lines expressed by equations (8), (10), and (11). 

A plan form with curved edges requires an infinite number of 
source lines. If the edges are composed of straight-line segments, 
however, a finite number of source lines can be used to represent the 

plan form. 

Swept Wings with Streamwise Tips 

Let the downwash field due to a semi-infinite line source 
beginning at xn,yn be denoted by w    j let the subscripts 

0 0 o,,yo 
L S, T, LD, and TD refer to the leading, side, and trailing edges 
and the leading- and trailing-edge discontinuities, respectively, all for 
the right half-wing,- and let w refer to the effect of the source 
lines originating on the left half-wing. Then, the downwash field for 
a uniformly loaded wing, which is symmetrical with respect to the 
x-axis and which has uniformly swept leading edges and streamwise tips, 
is given by the following sum: 
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w. (w+w) 
0,0 

(w+w) 

*,*h 
m - L,LD 

(w+w) 
'r,0 

(w+w) 

m 
+ct,±h 

T,TD 

(w+w) (w+w) 

I +ct,th m 

(12a) 

-'S 

In equation (12a) and in the subsequent expressions, the upper and 
lower signs preceding a term refer to the right and left half-wings, 
respectively. 

The downwash fields due to the semi-infinite line sources indi- 
cated in equation (12a) can be obtained by simple manipulation of equa- 
tions (8), (10), and (11). The following transformations are made to 
obtain the effect of a semi-infinite line source originating at x0,y0: 

x in equations (8), (10), and (11) = x-x0 

y in equations (8), (10), and (11) = ±(y-y0) 

(12b) 

Equations (8) and (10) can also be applied to a semi-infinite line 
source along the trailing edge by replacing m in these equations 
with the cotangent of the sweep angle of the trailing edge. 

At subsonic speeds, every point in the field is affected by all 
the terms in equation (12a); whereas at supersonic speeds, the point 
is affected only by those terms that refer to edges which lie within 
the Mach forecone from the point under consideration. 

Rectangular Wings 

For the rectangular wing, the edge discontinuities 
disappear and equation (12a) becomes 

LD and TD 
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W0 - [^0,0 - ^0,*^ - [<W+v)c,0 " (v+w)c,±h]T " 

[(^0,th"(w^c,±h]s <12c) 

WINGS WITH ARBITRARY LOADING 

If the wing loading is an arbitrary function of x and y, the 
integration in equation (3) for the downwash field is, in general, 
required over the entire wing surface and in the wake. An alternative 
•procedure in this case is the use of "correspondence formulas" as 
indicated in reference 9 by means of which the downwash field due to 
a variable loading may be expressed in terms of the downwash field due 
to a uniform loading with the addition of corrections for the edges of 
the plan form. 

In reference 8, it is shown that if u on the wing is expressed 
in a series as a function of x and y in terms of the uniform 
prescribed velocity u0 and any term in the series is differentiated 
with respect to x and y, s and t times, respectively, such that 

(u) s t = buo (on ^"S) (13a) 

where b is a constant; then subject to. edge corrections, there 
results 

(wn^k) s t (x,y,z) = bwQ(x,y,z) (13b) 

where w ,  and w,. refer to the downwash fields due to the term in 
n,k      0 

the series and to a uniform loading, respectively. The edges of finite 
plan forms may alter the given relation (13a) so that edge corrections 
may be required for the relation expressed by equation (13b). At 
supersonic speeds, the relation given by equation (13b) thus applies 
to finite wings at all points in the flow field outside of the Mach 
aftercone from the edges that alter the given relation (13a) on the 
wing. Correspondence formulas for rectangular wings at subsonic and 
supersonic speeds are given in reference 8, table I. 

H 
H 
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ILLUSTRATIVE EXAMPLE FOR RECTANGULAR WING 

AT SUPERSONIC SPEEDS 

As an illustration of the method described herein, the downwash 
field is obtained at supersonic speeds for a rectangular wing vith 
uniform loading and with linear chordwise variation in loading. The 
lettered regions in the subsequent discussion refer to figure 3. 

Uniform Loading 

For the rectangular wing with uniform loading at supersonic speed, 
equations (8e), (lib), and (12c) are applicable. 

Region A. - In the region within the leading-edge Mach cones and 
outside of the side-edge and trailing-edge Mach cones, 

(w0)A(x,-y,z) = (V0J0+W0J0)L 

!^0 (cos-l   -By   + cos-l   By   \      _BUQ   (l4) 

VX
2
-B

2
Z
2
      V; x2-B2z2 

Region B. - In the region within the trailing-edge Mach cones and 
outside of the side-edge Mach cones, 

(v0)B(x,y,z) =  (W0)A - (wc^0 + wC)0)T 

TJ  A 
Bu0/  -1     -By _i    By = -BuA +   cos  —,    ,  ^  + cos 0   *      A//.. _x2 ^2_2 /wW V(x-c)2- B"z 

Region C. - Region C, which refers to points outside the trailing- 
edge Mach cones, is divided into two subregions depending on whether 
the point lies within one or both side-edge Mach cones. 

Region C^_.  - If the point lies within one side-edge Mach cone, 
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(w0)c  (x,y,z)  = (w0)A - (v0}h)L ~ (wo,h)s 

-1      -Bya cos x  , , A 
aA A -Byai TTTT " r 

Bu, 0 cos     —■■ +Bva 
^2^V        "V^V^i?      ^ 

(16) 

ro 
H 
H 

where 

ea = BVya^2 

and 

ya = y-h 

Region Cp.  - For points within both side-edge Mach cones, 

(w0)C2(x,y,z) - (w0)Ci - (v0^_h)L - (w0>_h>s 

Bur 

=  (Vcn   + ~ 'O'Cx 
cos 

Byb 

Vx2-B2z2 +Byb 
x+ ^17 e2 

where 

b 

(17) 

eb - B^+Z
2 

and 

yb = y+h 

Region D. - Region D refers to points that are always within Mach 
cones from the leading, side, and trailing edges. This region is sub- 
divided into five regions, as shown in figure 3. 

Region H1.  - For points in Dx, 

(v0)Dl(x,y,z) . (w0)Ci - (wc^0 + vCf0)T - (w0)Ci + Bu0   (18) 
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Region D2. - For points in D2, 

(-0)DJ^y,z) = (v0)Ci + Bu0 + (we^)T + (^^ 

(w)  +^0 

Byc 

cos 

1 

-i       Bya 

V(x-c)2-B2z2 

x-c+Y(x-C)2-ea
2   $ 

Region Dg. - For points in D3, 

(W0)D1 " (v0,.h)L - (v0,.h)s 

x~£ 
2 

a 

^
W
O)D3(

X
^^Z) 

(19) 

/  \    Bu0   _i 
(Wjn  +  1 COS X O'D- 

Byb 
1 • * V?-I 

+Byv 
B2Z2      \xWx2-eb

2   sb< 
(20) 

Region D. ̂. - For points in D4, 

(
W

O)D4(
X

^^Z) 
(
V
O)D2 - (v0,.h)L - (v0^_h)s - (v0)  + (Wo) 

B, 

Region D5. - For points in D5, 

(w0)D5(x,y,z) - (Wo)D4 + {sC)_h)T + (%_h)i 

(21) 

Bu0 
^
W

O)D4 * ~T    cos"1 Byv 

i£ 2 T,2„2 c)*-B 

B^K / f - ^ (22) 
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Linear Chordwise Loading 

For linear chordwise loading, let 

u = auQx (on wing) 
(23a) 

„„,„,..+,  The downwash field for this type of 
where a and u  ^/^^'^e correspondence formulas of refer- 
loading can be obtained by J^J^^^d obtained in the preceding 
ence 8 in conjunction with the do^^i^V.  at supersonic speed. 

TT Z T U"o l^tZZTteT^i  to linear chordwise 
If W]_ ana Q    - respectively, then from reference 8, 

^TVfo^llZs'^te  Älin^edge Mach cones, 

wn(x,y,z) = a f wo^'y'z) d* 
x «JBz 

(23b) 

and for points within the trailing-edge Mach cones, 

wx(x,y,z) » a 

r nx 

/  w0(^,y, 
JJBZ 

z) a£ + c(Aw0)T(x,y,z) (23c) 

where    (to0,T    refer, to the effect of the ving cut-off at the trailing 

edge for uniform loading. 

0     •       fi        T?or the region within the leading-edge Mach cone and 
outsill^e-li^-ergeTa/Sailiag-eage «ach cones,  ^nations (2») 

and (14) are applicable and there results 

(wx)A(x,y,z)  = -aBu0 (x-Bz) 
(24) 

Hegion B. - In the region ^»^^ '«ft™  ^f^d 
outside the side-edge Mach cones, equations (23c), W, K 

pc+Bz 

(Wl)B(x,y,z)  = -BBu0 dUacBu0=0 (25) 

» •  n        TT, the region within one or both side-edge Mach cones 

ana Ä&"Ä££V* «—• —«~ (23b) 8PPlleS- 

H 
00 
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Region C±.  - For points in region C^, equation (23b) may be 

•written 

J«0(i,y,: (v±)c  (x,y,z) = a I  w (£,y,z)de = a I  (w ) (£,y, 
1 JBz u ^Bz    1 

z) dl 

aBu, Bya 
cos 

'Bz VP^j d$ + 

-X 

Byfl 

*a 

de 
5a 

(26a) 

In equation (26a), wQ(£,y,z)  is represented as (v0)c  (equation (16)) 

throughout the entire range of integration because (w0)c  evaluated 

in region A is equal to (wQ)A (equation (14)), inasmuch as the 

imaginary part is discarded. 

Equation (26a) requires the evaluation of the following integrals: 

-/* 
ens'1        Bya        rtt 

Ve2-B2z2 
(26b) 

where By  and B2z2 are constants, and 

12 

where £a is a constant. 

•^eW?2^   ea
2 A Ue (26c) 

The solution for 1-^    obtained by integration by parts and simpli- 
fication is 
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By, a    T,„ „^„v,-l J£ _ Bz cos-1 1^,.)« x cos"1 -p^ -Bya cosh-^ 
Bya

x 

i^^-S^ 

The solution for I2 is 

i2(x,ya^) = cosh -^-—^- 

(26a) 

(26e) 

Utilizing the solutions for ^ and I2 given by equations (26d) 
and (26e), equation (26a) yields for points in region C within one side- 
edge Mach cone, 

aBuQ i- -| 

(w^x^z) = - — [li(*,ya,*) 
+ ^a^^a^J 

Region C2. - For points in region C within both side-edge Mach 

cones, equation (23b) may be written 

(w1)c2(^y^z) = a J     v0
(^y'z) d^ 

(26f) 

aBu 

= <wi> c± 
+ — 

0 

Byb J7- 
>Bz AA2-B2Z 

d; 

V?V  v 
(27a) 

where v0(£,y,z) has been obtained from equations (16) and (17). 

Utilizing the solutions for I±    and I2 given in equations (26d) 

and (26e), in which ya and £a are replaced by yb and fcb, 
respectively, changes equation (27a) to yield 

aBun r- "I 
(v^Uy,*) - (wx)c + -~  Lli(x,yb,z) + By^ I2(x,yb,z)J 

(27b) 
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Region D. - In the region within the trailing-edge Mach cone and 
within one or both side-edge Mach cones, equation (23c) applies. 

Region I>j_. - For points in region D^> the integral in equa- 

H       tion (23c) becomes 
H 

a vn(S,y,z)d|= (w )      + aBu     / a£ = (w )      + aBu    (x-c-Bz) 
Jßz    ° 1C1 ° Jc+Bz X Cl ° 

( 28a) 

where WQ(£,y,z) has been obtained from equations (16) and (18). 

The quantity (AWQ)^ in equation (23c) is evaluated for this case 

as the difference between (wg)^  and (WQ)Q ; that is, from equa- 

tion (18), (Aw0)„ = ^u . When these results are combined, equa- 

tion (23c) yields 

(w]_)D (x,y,z) = (w1)c + aBuQ (x-Bz) (28b) 

Region D2. - For points in region D2, the integral in equa- 

tion (23c) becomes 

r»x 

fP        * --      '     * aBU° a   I      w0(S,y, ,z)d£= (v1)      + — 
JBz L 

-i      Bya / cos  x     £{:   + 

WBZ s\/(i-c)2-B2z2 

Bya  I    f , 1        - i^i ae 
U \s-<*V(^)2-sa

2   ^a2 
9. 

(29a) 

where wQ( £,y,z) has been obtained from equations (16) and (19). The 

integrals in equation (29a) may be evaluated by utilizing the solutions 
for Ij_ and I2 as expressed by equations (26d) and (26e). In these 
solutions x is replaced by x-c. The quantity (Aw0)T in equa- 
tion (23c) is evaluated in this case as the difference between (w_)_ 

- 0 Dp 
and (wQ)c . When these results are combined, equation (23c) yields 
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aBu, 
(^..(x^z) -  (w1)Ci + ~T-< I^x-Cfj^z)  + ByaI2(x-c,ya,z) + 

cos 
Bys 

+Byfl 
x-c 

I'I? /\/(x-c)2-B2z2   ^ \ x-c+ V(x-c)24 

Region D3. - For points in region D3, equation (23c) yields 

(w1)D3(x,y,z) = (wx)Di + 

(29b) 

Byb 

f coB-i    Byb    ae + 
VT^B'z 2„2 

Kz   ^ 
äi (30a) 

where wn(£,y,z) has been obtained from equations (18) and (20) and the 

term (Aw.)m is included in (wn)  . The integrals in equation (30a) 
0 1 x u1 

may be evaluated by utilizing the solutions for 1-^ and I2 as 

expressed by equations (25d) and (26e). In these solutions, ya is 

replaced by yb; thus 

aBu0 r -1 
(wl)j)3(^y,z) » (v^j) + -r-  [_Ii(x,yb,z) + Byb I2(x,yb,z)J   (30b) 

Region D4. - For points in region D^, equation (23c) yields 

(vihj*>y>*) = (
W

I)D2 
+ ^1^3 " (V

I
)
D1 

(31) 

Du 
H 
M 
H 

where wn(£,y,z) has been obtained from equations (19) and (21) 



NACA TN  2344 23 

Region Ü5. - For points in region D5, equation (23c) yields 

(v,)     (x,y,z)  =  (wn). 
aBu 

"I'D; l'D4 n 

°< cos -1 Byb 

'c+Bz V(^-c)2-B2z2 
dt  + 

By* 
5-c 

^ Ve.^V(U)2v   ^ 
di + 

■1       B^b cos  +Byb 

*JU-cY' 2„2 -B^z X-C+ 

-I x-c' 

V(x-c)2-eh
2~ *b

2' 
(32a) 

where w0(&,y,z)  has been obtained from equation (22). The integrals 

in equation (32a) may be evaluated by utilizing the solutions for I, and 

I2 as expressed by equations (26d) and (26e). In these solutions, 
x is replaced by x-c, and ya and £a are replaced by yb and £b, 
respectively. Thus 

5 "!• 

aBuQ 
Il(x-c,yb,z) + Byb I2(x-c,yb,z) + 

cos ^b_ +By 

V(x-c)2-B2z2    \x-c+^(x-c)2-eb
2  ^/ 

x-c 

e,2 

(32b) 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, January 22, 1951. 
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APPENDIX 

DERIVATION OF DOWNWASH FIELD DUE TO SEMI-INFINITE 

LEFT STREAMWISE SIDE EDGE 

The subseouent derivation for the downwash field refers to the 
left streamwise side edge of the uniformly loaded semi-infinite oblique 
wing, as shown in figure 1. 

The downwash field contributed by the side edge may be obtained by 
means of equation (3), in which the integral is evaluated along the side 
edge. As noted in the text, the quantity u£ is zero along the stream- 

wise side edge (of width An)}  therefore, 

P V11 d^ vs(x,y,z) - K / -J—- (Al) 

H 
CO H 

Across the side edge there is an abrupt increase in u. This 
increase is assumed to occur over an infinitesimal width e across the 
side edge. Then according to equation (4a), 

v(x,0,OJ = /  u^d^ — x (A2) 
px      u0 

Kx,0,0) = /  u^de= — 

At y = £, however, u  due to the side edge vanishes and therefore 

v(x,€,0) = 0 (A3) 

The distribution of v in the vicinity of the side edge (y = 0) 
is shown in the following sketch: 

v = V 

o v = 0 
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It is assumed that the abrupt changes in v indicated in the 
sketch occur over the infinitesimal distances ATJ, SO that along the 
line (£,0,0), 

v^AT] = -ii- (A4) 

and along the line    (£,€,0), 

rrp\ 
uoe 

(A5) 

Substituting these values for v A^ into equation (Al) results in 

Ku( 
wg(x,y,z) = — 

»,x-BVy2+z2 

i di 

0        V(x-02-B2(y2+z2) 

>x-BV(y-e)2+z2 

V(x4)2-B2(y-€)2+z2 

where the two upper limits refer to subsonic and supersonic speeds, 
respectively. Integration of equation (A6) yields 

(A6) 

w
s(x,y,z) ^N-x log | x-e + V(x-o2-B2(y2

+z
2)| 

V(*-02-B2(y2+z4 
.Or-, X-B Vy2+Z2 

fx log I x4 + V(x-02-B2[(y-€)2+z^]| - 

 J*>,x-B V(y-e)2+z2 

V(x-e)2-B2[(y-e)2+z?|[ (A7) 
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When the limits are substituted into equation (A7) and e is 
made to approach zero, the following results are obtained: 

At subsonic speeds, 

/           >      Bi"u0y / 1 2x \ (AQ) ws(x,y,z)  »  . - r-^j lAbJ 
2*   l    -Vx2+efl

2   *a ' x+' 

where 

ed »• V|B2| (y2
+,

2) 

At supersonic speeds, 

B2ur 
(x,y,z) . ^     1     - ^ (A9) 
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Flight 
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Side 
edge 

*» y,7? 

Uniform loading e>C u0 
oo 

Figure 1.- Semi-infinite oblique wing with uniform loading, 
Origin is at leading edge of center section. 
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